Bounds on Sum Number in Graphs Hiroshi

نویسندگان

  • Hiroshi Nagamochi
  • Mirka Miller
چکیده

A simple undirected graph G is called a sum graph if there is a labeling L of the vertices of G into distinct positive integers such that any two vertices u and v of G are adjacent if and only if there is a vertex w with label L(w) = L(u) + L(v). The sum number (H) of a graph H = (V; E) is the least integer r such that graph G consisting of H and r isolated vertices is a sum graph. It is clear that (H) jEj. In this paper, we discuss general upper and lower bounds on the sum number. In particular, we prove that the average of (H) over all graphs H = (V; E) with xed jV j and jEj is at least jEj 0 3jV j log jV j log((jV j 2)=jEj) 0 jV j 0 1. In other words, for most graphs, (H) = (jEj). 1 1 Introduction The notion of a sum graph was rst introduced by Harray [6]. From a practical point of view, sum graph labeling can be used as the compressed representation of a graph, a data structure for representing the graph. The data compression is important not only for saving memory space but also for speeding up some graph algorithm when adapted to work with the compressed representation of the input graph (for example, see [4]). There have been several papers determining or bounding the sum number of particular classes of graphs H = (V; E) (n = jV j, m = jEj): (K n) = 2n 0 3 for complete graphs K n (n 4) [1] (K p;q) = d

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Weak signed Roman domination in graphs

A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Bounds on Sum Number in Graphs

A simple undirected graph G is called a sum graph if there is a labeling L of the vertices of G into distinct positive integers such that any two vertices u and v of G are adjacent if and only if there is a vertex w with label L(w) = L(u) + L(v). The sum number (H) of a graph H = (V; E) is the least integer r such that graph G consisting of H and r isolated vertices is a sum graph. It is clear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997